ЧŲ.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Flux measurements at the SMEAR III station

Leena Järvi

The 2nd Helsinki Testbed Workshop 12.4.2007

Introduction

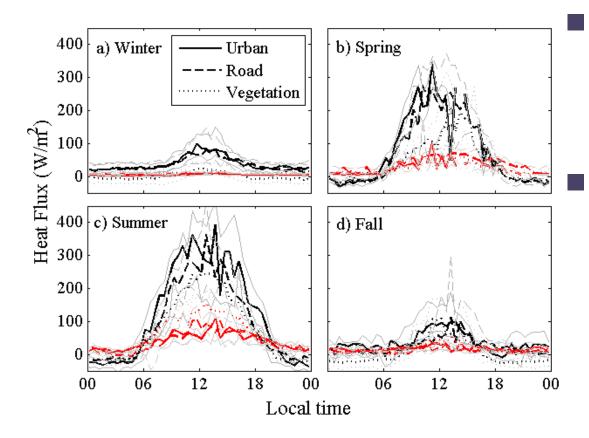
- The SMEAR III station measurements started in Helsinki in fall 2004
- One measurement site is the 31 m high tower at Kumpula where the vertical flux measurements are made including
 - Momentum flux
 Sensible and latent
 heat fluxes
 Carbon dioxide flux

- Flux is the transfer of some substance/area/time
- Fluxes are calculated by the eddy covariance technique

$$F = \overline{w's'}$$

 The high-frequency (10 Hz) measurement system includes a Metek ultrasonic anemometer (USA-1) and an open path infrared gas analyzer (LI-7500)

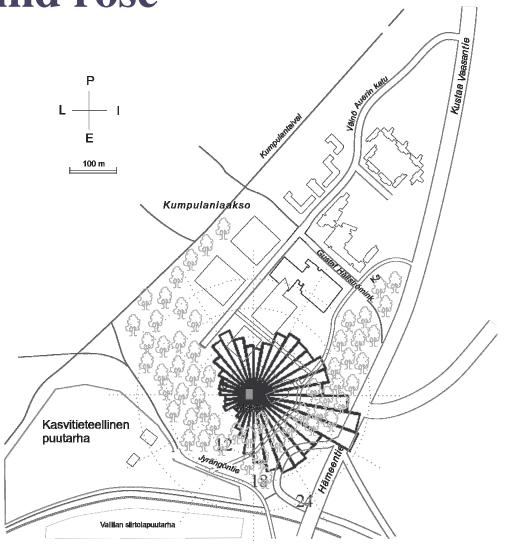
Methods


- The surroundings of the tower are very heterogeneous and measurements are divided into three land use sectors: Urban, road and vegetation
- Data between 12/2005 and 2/2007 was analyzed and data was divided according to season

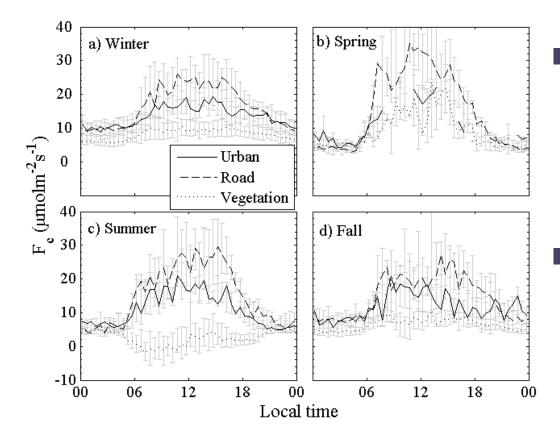
	Land use type	Building fraction (λ _p)	Road fraction (λ _r)	Vegetation fraction (λ _v)
320 - 40°	Urban	0.42	0.51	0.07
40 - 180°	Road	0.10	0.60	0.30
180 - 320°	Vegetation	0.02	0.13	0.85
Full circle		0.14	0.40	0.46

Table 1. The land use fractions around the measuring tower within a circle of radius 250 m separately for all three sectors.

Results: The diurnal cycle of sensible heat (black) and latent heat (red) fluxes


Sensible heat flux was nearly always lower over vegetation

Highest latent heat fluxes were measured over the vegetation at summertime due to evapotranspiration


Results: CO₂-flux wind rose

- CO₂-fluxes have a clear WD dependent pattern
- Highest fluxes are measured in the road sector
- Lowest fluxes in the vegetation sector

Results: Diurnal cycle of CO₂ fluxes at different sectors and seasons

 On average, the surroundings of the tower acted as a source for CO₂

 At summer days, the vegetation uptake on averagely exceeded the anthropogenic sources

Conclusions

- The sensible heat flux had highest daytime values in urban and road sector
- The latent heat flux was systematically lower that sensible heat flux with highest values at vegetation sector at summer
- CO_2 exchange was affected by the traffic
- On average, the surface acted as a source for CO₂
- At summer mornings, the uptake of vegetation exceeded the anthropogenic sources resulting negative fluxes