

# Quality of Dense Surface Weather Measurement Networks

Vesa Hasu



#### Motivation



- More dense measurements are needed for future improved weather forecasting products
  - Dense in both temporal and spatial direction
- Dense measurement networks means:
  - More measurements
  - More devices
- These result in new system requirements:
  - More measurements → more measurement quality control (QC)
  - More devices → more device maintenance

#### Motivation



- The increased number of devices increases also the complexity and cost of maintenance
  - What to repair?
    - What kind of faults must be repaired?
  - When to repair?
    - When faults are significant enough?
- If all measurements are quality controlled, why not look the network "big picture"?

The idea:

in addition to the *Measurement Quality*, let's focus also to the *Network Quality* 

# Network Quality Control



- In here, network quality control refers to looking the measurement performance in a general level
- The aim is to locate the most problematic devices for maintenance, i.e. describe numerically measurement performance levels
- The outlook of the decision chain:



### **Network Quality Control**



- Basically, inputs of network quality control are the outputs of measurement quality control, e.g.:
  - Quality control flag (erroneous/ok)
  - Quality control decision information
- Output of the network quality control is a description of the state of the measurement device quality
  - Description/through performance indices

#### **Performance Indices**



- Performance indices should describe the quality of the measurement device in linguistic terms
- Indices must describe the performance in one station and network levels
- Suggested indices:
  - Availability (Are there missing measurements?)
  - Accuracy (Are there inaccurate measurements?)
  - Reliability (Does the station work reliably?)
  - Estimability (How well the measurement can be estimated based on the neighbor stations?)
  - Influence (How much the station is estimated to affect the network performance?)

#### Beyond The Indices



- What are the performance indices good for:
  - the maintenance decision making
  - giving an additional view of possible problems in the measurements for the end user
- The exact reactions of maintenance personnel / data users to indices depend on the minimum required quality level

#### A Numerical Example: Performance Indices



- Station level indices:
  - Availability
  - Accuracy
  - Reliability (based on the availability and accuracy)
- Network level indices:
  - Estimability (based on reliabilities of the neighbor stations)
  - Influence (based on reliability and estimability)
- The indices are formed based on heuristic mathematical rules and the residual signal of the measurement quality control
- The basic performance index interpretation guide:

 $0 \rightarrow bad$ 

1→ good

# A Numerical Example



An example WXT-neighborhood



Data: July 2006 temperature measurements

#### A Numerical Example: Index Values



#### • Indices:

Thin blue = "Reliability"

Dashed black = "Estimability"

Bold red = "Influence"

 An example interpretation of the second row:

- Huhtionmäki and Kaukas have a low reliability and also compromized estimability
- Kantele has a compromized estimability value, but the measuerement is reliable



# A Numerical Example: Measurements



• Exerpts of temperature measurements:



# A Numerical Example: Measurements



• Exerpts of temperature measurements:



#### **Conclusions**



- A flow of incoming data "desperate times call for desperate measures"?
- Measurement network quality must be monitored
  - in order to get information about the measurement
  - for helping the maintenance decision making
- A key for successful network quality control is the transparency of the concepts for ease of use
  - Simple linguistic terms