

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Mixing height studies

Ari Karppinen Nora Eresmaa Jari Härkönen

Atmospheric boundary layer height, or the mixing height determine the volume

available for pollutant dispersion.

It depends on basic meteorological parameters, surface turbulent fluxes and physical parameters, and follows a diurnal cycle.

The mixing height cannot be observed directly by standard

measurements, so that it must be parameterised or indirectly estimated from profile measurements or simulations.

Ceilometer locations

Reference mixing height

- In convective situations the Holzworth method used
- In stable situations the Richardson number Ri method used ($Ri_{crit} = 1$)

$$Ri(z+1) = \frac{g}{T_s} \frac{(\theta_{i+2} - \theta_i)(z_{i+2} - z_i)}{(V_{i+2} - V_i)^2}$$

(Joffre et al., 2001)

Vantaa, 29 May 2002 08:56 UTC

Vantaa, 4 January 2002 07:17 UTC

ITOS KA INSTITUTET ROLOGICAL INSTITUTE

Ceilometer: Clear sky situations

• MH estimated by fitting an idealized profile to the measured backscattering profile by the formula

$$B(z) = \frac{B_m + B_u}{2} - \frac{B_m - B_u}{2} \operatorname{erf}\left(\frac{z - MH}{\Delta h}\right)$$

(Steyn et al., 1999)

• B_m is the mean mixing layer backscatter and B_u is the mean backscatter in the air above the mixing layer; Δh is related to the thickness of the entrainment zone

An idealized backscattering profile.

Results: Clear sky situations

Comparison between mixing heights determined by the ceilometer and radiosoundings in convective situations.

The regression line is

 $h_{ceilometer} = (0.80 \pm 0.10) h_{sounding} + (47 \pm 89)$

The correlation coefficient r = 0.90

Comparison between mixing heights determined by the ceilometer and radiosoundings in stable situations. The regression line is

 $h_{ceilometer} = (0.62 \pm 0.16)h_{sounding} + (120 \pm 34)$ The correlation coefficient r = 0.80

Examples of longer observation periods

600 Ceilometer . Cloudy situation -e- MetPP 500 Sounding 400 Height (meters) 000 200 <u>୦୦୦୦୦୦୦୦୦୦</u>୦ 100 00 00 6 12 18 6 12 Time (UTC) 2-3 January 2002

A 24-h period of ceilometer echo intensity observations at Vantaa, 29 May 2002 Mixing height as determined by different methods or schemes during a surface temperature inversion (2-3 January 2002)

Vallila, 21 August 2006: The height of the MHs determined by the ceilometer and radiosounding are superimposed on the ceilometer raw echo data.

Further developments

• The 2 & 3 -step algorithms :

$$B(z) = \frac{B_{SL} - B_{ML}}{2} - \frac{B_{SL} - B_{ML}}{2} * erf(\frac{z - MH_{SL}}{\Delta h_{SL}}) + \frac{B_{ML} + B_{U}}{2} - \frac{B_{ML} - B_{U}}{2} * erf(\frac{z - MH_{ML}}{\Delta h_{ML}})$$

- MH_{SL} corresponds to the lower gradient (Step1); MH_{ML} to the upper one (Step2).
- The new algorithms have been tested with a very limited number observations – so far...

An idealized backscattering profile (2-step algorithm) => 3 -step

20/5/2005 Kumpula

15

20

10

hour

5

measured profile

model -profile

11

Cloudy situations

- observations divided into foggy and cloudy (types 1 and 2) situations:
 - Fog Backscatter maximum on the ground.
 - Cloud type 1 No local minimum below the cloud
 - Cloud type 2 A local minimum below the cloud

Examples of the cloud types 1 (upper figure) and 2 (lower figure)

Cloudy situations – methods

- Fog: the idealized profile method
- Cloud type 1: The critical value (25% of the maximum value)
- Cloud type 2:
 - Minimum well-defined: the cloud removed and the idealized profile method used
 - Otherwise the minimum or the critical value (10% of the maximum value) used

Example of the removed cloud at Vantaa, 3 April 2002 9:40 UTC

Results: Cloudy situations

Figure 7. Comparison between mixing heights determined by the ceilometer and radiosoundings in cloudy situations.

Doppler lidar at Malmi (http://www.ties.salford.ac.uk/people/keb/ufamlidar.html)

Table 1. The comparison between MHs determined by cellometer and three investigated Doppler lidar measurments. r responds to the correlation coefficient.

	Regression line	r	
Fixed threshold value (10-8)	$MH_{Mdar} = (0.90 \pm 0.37) MH_{cellometer} - (18 \pm 170)$	0.71	7
Idealized 3-step method	$MH_{Max} = (0.30 \pm 0.14) MH_{cellometer} + (560 \pm 65)$	-0.06	
Height of the backscatter maximum	$MH_{Matr} = (0.20 \pm 0.44) MH_{cellometer} + (660 \pm 68)$	0.35	

Most promising method for Doppler lidar seems to be the "fixed treshold" method – NOTE! Vertical wind speed information not yet utilized

HTB Workshop; Ari Karppinen 15

Status/conclusions/further work

- The most promising instruments in mixing height determination identified so far are ceilometers and Doppler lidar.
- Both systems still face some problems. The biggest problem for ceilometer are the clouds, as the biggest problem for the Doppler lidar is the range of the data

References

- Eresmaa, N., 2005. Sekoituskorkeuden määrittäminen ceilometrin avulla, Pro Gradu tutkielma, Helsingin yliopisto, Fysikaalisten tieteiden laitos, 56 pp.
- Eresmaa, N., Karppinen, A., Joffre, S., Räsänen, J. and Talvitie, H., 2005. Mixing height determination by ceilometer, *Atmospheric Chemistry and Physics Discussions*, 5, pp. 12697-12722, <u>SRef-ID: 1680-</u> <u>7375/acpd/2005-5-12697</u>.
- <u>Münkel C</u>, Eresmaa N, Räsänen J, Karppinen A, 2005. Retrieval of mixing height and dust concentration with lidar ceilometer, 2005. Proceedings of the *5th International Conference on Urban Air Quality*, Valencia, 29-31 March 2005.
- Eresmaa, N, Karppinen, A, Joffre, S, Räsänen, J. and Talvitie, H., 2006. Mixing height determination by ceilometer, *Atmospheric Chemistry and Physics, vol. 6, no. 6,* pp. 1485-1493, <u>SRef-ID: 1680-7324/acp/2006-6-1485</u>.
- Münkel, C., Eresmaa, N., Räsänen, J., Karppinen, A:, 2006. Retrieval of mixing height and dust concentration with lidar ceilometer. *Boundary Layer Meteorology*, (*online first*) doi: 10.1007/s10546-006-9103-3).
- Rantamäki, M., Eresmaa N. and Karppinen A., 2006. Utilising dense observation networks in air quality episodes. Proceedings of the 6th Annual Meeting of the European Meteorological Society 6th European Conference on Applied Climatology, 4 – 8 September 2006, Ljubljana, Slovenia. Abstracts, Vol. 1, EMS2006-A-00543.
- Eresmaa, N.; Karppinen, A.; Räsänen, J.; Talvitie, H. 2006. Mixing height determination by ceilometer in cloudy situation. In: *Proceedings of the 6th Annual Meeting of the European Meteorological Society 6th European Conference on Applied Climatology*, 4 – 8 September 2006, Ljubljana, Slovenia. Abstracts, Vol. 1, EMS2006-A-00442. (http://www.cosis.net/abstracts/EMS2006/00442/EMS2006-A-00442.pdf)
- Eresmaa, N., Karppinen, A., Bozier, K., Rantamäki, M., 2007. The mixing height determination in Testbed campaign in Helsinki, Finland, Proceedings of the 6th International Conference on Urban Air Quality, Limassol, Cyprus, 27-29 March, 2007