HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Continuous air pollution and surface-atmosphere interaction measurements at the SMEAR III station in Helsinki

Leena Järvi et al.

Ubicasting workshop 10.9.2008

Motivation

- Urban areas create very different circumstances for the lower level of the atmosphere
 - Many of the pollution sources and majority of people are located in cities
 - Urban areas are characterized by high surface roughness and different thermal conditions which affect turbulent mixing and further pollutant dispersion
- Still lot of information missing about the sources, sinks and mixing of air pollutants
- Measurements at the SMEAR III station try to give answers also these questions

Measurements used in this study

- The aerosol particle number concentration with size range 3 nm-20 µm are measured with twin DMPS and APS
- Particles are divided in three classes due to their different dynamics and sources
 - > Ultrafine particles (UFP, d<100 nm), accumulation mode particles (100nm<d<1 μm) and coarse particles (d>1 μm)

- Pollutant gases: Ozone (O₃), nitrogen oxides (NO_x), carbon monoxide (CO) and sulphur dioxide (SO₂)
- Meteorological variables: Pressure, solar radiation, wind speed and direction, RH and turbulent exchange
- Data between Aug 2004 and Jun 2007 is shown
 Not all variables available the whole time
- Data was divided into four seasons: winter, spring, summer and fall

Time series of pollutant concentrations

Diurnal behavior of aerosol particle concentrations for different seasons and separately for weekdays and weekends

Dependency of particle concentrations on traffic rate and meteorological variables

- A multiple linear regression (MLR) models ($Y = b_0 + b_1X_1 + ... + b_nX_n$) were made for UFP, accumulation mode particle and coarse particle concentrations
- We wanted to find those independent variables which minimize the difference between the measured and modeled concentrations
- We also get the relative importance of each independent variable compared to the other variables in the model
- MLR was made for Dec 2005-Aug 2006.

Example from MLR analysis: Ultrafine particle concentrations in Dec 2005

Variable	β-constant
H ₂ O	-0.15
WD ₁	0.04
σ_{w}	-0.21
Traffic	0.70

N.

Main findings from the MLR analysis

 UFP concentrations could be explained best with the available variables

Most affected by traffic, turbulent mixing and H2O

- In the case of accumulation mode particles, traffic was equally or less important than meteorological variables
- Coarse particle concentrations could not be explained as well as fine particle concentrations

> Humidity had an great impact especially in spring

- Turbulent mixing had an inverse effect on different sized of particles
 - Increases the mixing volume and concentrations decrease
 - On the other hand, larger particles are re-suspended more efficiently

Correlations between ultrafine particles and concentrations of NO_x, CO and SO₂

Correlations between accumulation mode particles and concentrations of NO_x, CO and SO₂

Most the pollutants showed dependence on traffic

- For particles, the importance decreased with increasing particle size
- Fine particles, NO_x, CO and SO₂ experienced their maxima in winter due to the lowered mixing and enhanced emissions
- The effect of re-suspension could be seen in coarse particle concentrations especially in spring

- Long-range transport had an effect on accumulation mode particles (Aug 2006!)
- Correlation between UFP and SO_2 increased in spring and summer \rightarrow New particle formation?