Overview of the Vaisala UbiCasting project UbiCasting Project Workshop 2008-09-10 Heikki Turtiainen #### **Trends in Weather Services** • Sensor networks – M2M wireless communication New remote sensing instruments Increasing computing power • Mesoscale models - nowcasting #### **Data distribution** • Internet Mobile terminals Real time weather data will be available anywhere, any time. Ubiquitous weather services will become reality. ### **UbiCasting Production Machinery** #### **Kokkola Pilot System Components** ### User interface combines data from several sources Example: combined observations + forecast graph on Kokkola weather pages ### What next? - UbiCasting phase 2? - Future of Helsinki Testbed? #### **OGC® Sensor Web Enablement** Figure 1: Sensor Web Concept In an Open Geospatial Consortium, Inc. $(OGC)^2$ initiative called Sensor Web Enablement (SWE), members of the OGC are building a unique and revolutionary framework of open standards for exploiting Web-connected sensors and sensor systems of all types: flood gauges, air pollution monitors, stress gauges on bridges, mobile heart monitors, Webcams, satellite-borne earth imaging devices and countless other sensors and sensor systems. # Ilmatieteen laitoksen palveluiden vaikuttavuus [Effectiveness of Finnish Meteorological Institute (FMI) services]. Hautala, Raine & Leviäkangas, Pekka (toim.). VTT Publications 665, 2007. Table 7.2. Summation of the benefits of meteorological information utilised by different sectors categorised by their time horizons (++ = highly beneficial, + = beneficial). | Sector | Historical
data and
climatologica
impacts | Real-time
information
I and warning
services | | Few day
forecast
(3–5 days) | Medium-
term
forecast
(5–10
days) | Sea-
sonal
forecast
(1–6 m) | Climate
scenarios | |---|--|---|----|-----------------------------------|---|--------------------------------------|----------------------| | Road transport incl. pedestrians & cyclists | | ++ | + | | | | | | Waterway
transportation
Air | + | ++ | ++ | + | + | | | | transportation
Rail
transportation | т | + | + | ++ | + | | | | Logistics Construction & | + | ++ | ++ | + | | | | | facilities
management | + | ++ | ++ | | | + | + | | Energy
production | | ++ | ++ | + | + | | | | Agricultural production | ++ | ++ | + | + | + | + | + | # Ilmatieteen laitoksen palveluiden vaikuttavuus [Effectiveness of Finnish Meteorological Institute (FMI) services]. Hautala, Raine & Leviäkangas, Pekka (toim.). VTT Publications 665, 2007. Table 7.2. Summation of the benefits of meteorological information utilised by different sectors categorised by their time horizons (++ = highly beneficial, + = beneficial). | Sector | Historical
data and
climatologic
impacts | Real-time
information
al and warning
services | Daily fore-
cast
(12 h –
2 days) | Few day
forecast
(3–5 days) | Medium-
term
forecast
(5–10
days) | Sea-
sonal
forecast
(1–6 m) | Climate
scenarios | |---|---|--|---|-----------------------------------|---|--------------------------------------|----------------------| | Road transport incl. pedestrians & cyclists Waterway transportation Air transportation Rail | + | ++ | + ++ + | + | + | | | | transportation | | + | + | ++ | + | | | | Logistics Construction & | + | ++ | ++ | + | | | | | facilities
management
Energy | + | ++ | ++ | | | + | + | | production | | ++ | ++ | + | + | | | | Agricultural production | ++ | ++ | + | + | + | + | + | | Sector | Principal impacts and bene-
fits of weather and road sur-
face condition information
services | Value of current benefits
[M€/y]
– existing services | Value of potential additional benefits [M€/y] – developed services – FMI's current market shares | | | |--|---|---|---|--|--| | Road
transport
(public
roads) | Reduction in number of accidents, more efficient maintenance | 11–20 M€ in total
– accidents 9–18 M€
– maintenance 2 M€ | accidents 9–18 M€maintenance, not calculated | | | | Pedestri-
ans &
cyclists | Reduction in number of slipping accidents, more efficient maintenance | slipping accidents 113 Me maintenance, not calculated | – slipping accidents 122–203 M€ – maintenance, not
calculated | | | | Waterway
transport | Reduction in number of accidents and environmental damage, more efficient operations, reduction in fuel consumption | 25–39 M€ in total – accidents 14–28 M€ – oil combating 10 M€ – rescue operations, fuel savings etc. 1 M€ | Not calculated | | | | Air traffic | Reduction in number of accidents and emissions, more efficient operations, time savings for travellers | 54 M€ in total - accidents 46 M€ - fuel savings 4 M€ - airport maintenance 3 M€ - environmental damage 1 M€ | Around 4 M€ | | | | Rail traffic | Higher accuracy of train timetables | 0.3 M€ | 0.2 M€ | | | | Logistics,
supply
chain | Higher predictability of deliveries, reduction in storage costs and risks (accidents, damage) | Not calculated | 5 M€ | | | | Construc-
tion &
facilities
manage-
ment | Prevention of mould and mildew
damage, more efficient mainte-
nance (worksites and court-
yards) | 15 M€ in total – construction 10 M€ – facilities management 5 M€ | 15 M€ in total – construction 10 M€ – facilities management 5 M€ | | | | Energy
production
& distribu-
tion | Energy production capacity and availability predictions, prevention of damage and production and distribution interruptions | 10 M€ in total - prevention of interruptions 2 M€ - production predictions 3 M€ - peat production 5 M€ | 8–23 M€ in total – prevention of interruptions 3–8 M€ – production predictions 5–15 M€ | | | | Agriculture | Crop protection, pest control, harvesting | 34 M€ in total - increased crops 12 M€ - crop damage 12 M€ - more efficient cultivation 8 M€ - other benefits 2 M€ | 3–15 M€ in total – more accurate forecasts 1–5 M€ – seasonal forecasts 2–10 M€ | | | | Total | Higher predictability, better planning, more efficient operations, reduction of damage and number of accidents | 262–285 M€ in total
Note! The monetary value
of all benefits has not been
calculated | Potential additional benefits
166–283 M€
(428–568 M€ in total for the
analysed sectors) | | | # Socio-economic benefits of weather information services provided by the FMI Potential benefits of advanced weather services for pedestrians & cyclists: 122-203 M€/year Source: Ilmatieteen laitoksen palveluiden vaikuttavuus [Effectiveness of Finnish Meteorological Institute (FMI) services]. Hautala, Raine & Leviäkangas, Pekka (toim.). VTT Publications 665, 2007. ### Future of Helsinki Testbed: how to get the loop running? "A working relationship in quasi-operational framework among forecasters, researchers, private-sector, and government agencies aimed at solving operational and practical regional problems with a strong connection to endusers."