

SoilWeather:

In-situ wireless sensor network for agriculture and environment

UBICasting Workshop, Sept.10, 2008

Markku Järvenpää, Agrifood Research Finland (MTT)

SoilWeather: Wireless Sensor Network and a research project

- Build up a sensor network for agriculture and water monitoring
- Provide data on local weather, soil moisture and water quality at high temporal resolution
- Develop automatic sensors and data services
- Develop agricultural applications and environmental monitoring
- Support new business opportunities

Sensors, measurements and data

55 A-Weather station:

Air temperature, humidity, precipitation, wind direction and velocity

10 FDR- and 20 ECH₂O sensors: soil moisture

18 Obs3+ -sensors: turbidity

4 S::can spectrometer:

turbidity, nitrate content

4 Keller 0.25 bar: water level

- Near-real time (time lag 15 min – 4 hours)
- High temporal resolution (15 min - 1 hour)
- Spatially accurate
- Different scales: catchment - sub catchment - field parcel
- Year-round monitoring

Kuva: Lippo Sundberg / MTT

Sensor locations

- Covers Karjaanjoki river basin (2000 km²)
- Field parcel level measuring in Hovi
- Intensive monitoring of lake Hiidenvesi
- Leaching model for River Vihtijoki

Data quality

- Representativiness of sensor location
- Water and soil samples to calibrate the sensors and to monitor data quality
- Automatic algorithms developed to alert on missing and erroneous measurements
- Automatic cleaning for sensors in water by compressed air or wipers
- Regular / when needed cleaning and maintenance in the field
- Log collected on maintenance activities

Automatic data quality control

Advantages of SoilWeather WSN (1/2)

More detail information on the temporal variation and peak values of nutrient loading through seasons

Detail input data for models → More accurate estimates of nutrients leaching and water quality

Advantages of SoilWeather WSN (2/2)

- Detailed information on influences of cultivation practices and water protection activities on water quality
- Decision support for cultivation management practises (e.g. irrigation, pesticide spraying etc) through detail monitoring and models (crop diseases risk predictions)
- •Multipurpose WSN: possible applications in many other sectors e.g. in tourism or in food chain (traceability, estimating environmental impacts of food products)

Pre-conditions for

automatic monitoringMaintenance regularlyHuge data amount

- Maintenance regularly and when needed (e.g. change battery or broken parts)
- Regular cleaning for sensors in waters
- Calibration samples
 - Regular maintenance in the field

- Erroneous measurements
- Missing measurements

 \downarrow

Well-developed data services

Applications

Soil moisture modelling

Plant protection forecasts

Interpolation of weather data into a fine grid

SoilWeather

Wireless Sensor Network

Precision agriculture

Hydrological and leaching models

Monitoring the efficiency of constructed wetlands

Development of sensor technology and data services

Ari Venäläinen, Finnish Metereological Institute:

Interpolation of weather data into a fine grid

Hovi, Vihti, size of test area 7*7 km²
Land use Elevation

Meteorological parameters in 25 m * 25 m grid

Asko Hannukkala,

MTT Agrifood Research Finland:

Forecasting potato late blight Phytophtora infestans

- Chemical control is necessary in conventional farming
- 4 9 consecutive sprayings are needed/season
- Correct timing according to blight risk is essential

Untreated

Chemical control

- Current blight forecast provided by A-lab: Based on NegFry model developed for old clonal blight population, risk values in internet, warnings by mobile phone
 - System is functional
 - Model needs updating

- Blight risk forecast is based on LB2004 simulation model
 - Developed at the Cornel University
 - Parameterized for the epidemiology of Nordic blight population in NorPhyt project in 2003-2006
- Sub-model estimating spore formation is simple and relatively reliable to estimate the timing of fungicide application
 - Spores are formed (=HSPO) if RH is over 90 % and temperature is over 8 degrees C continuously for more than 10 hours
 - Fungicide application is needed, if HSPO > 10 h and there is more than 7 days since last fungicide application

- Verifying spore formation
- Good correlation with HSPO and blight infections, as has been shown earlier in Jokioinen

- HSPO can be applied in blight forecast
- NegFry model in current A-lab forecast should be replaced by HSPO

Liisa Pesonen,

MTT Agrifood Research Finland:

Precision farming

User-centric mobile information management in automated plant production utilises real-time weather and environmental data (InfoXT)

Jari Koskiaho,

Finnish Environment Institute (SYKE):

Monitoring efficiency of constructed wetlands

Measurements at Hovi wetland

- Continuous (hourly data) monitoring of inflow and outflow with water height-, turbidity-, NO3- and temperature probes
- Frequent data recording coupled with water samples for probe calibration -> estimates of wetland performance
- Suspended solids and total P retentions can be calculated by high correlations with turbidity (R² = 0.96 and 0.93, respectively)
- By now, almost 1-year non-stop data

Suspended solids and total P retentions during this period both 68%

Nitrate-N retention during this period 65%

No outflow in summer when water height less than 0!

Future plans for SoilWeather WSN development

- Open access
- Increase collaboration between WSNs
 - → increase spatial coverage and support joint use of data sets
 - → increase interoperability of WSNs
 - → avoid overlapping development work
- Open for different sensors, testbed for sensors and data services
- Well-developed data services (DQ, automatic computations, visualisation and mapping services)

MTT Agrifood Research Finland

Finnish Environment Institute (SYKE)

> **Finnish Institute** of Meteorology

University of Aarhus

Association for Water and Environment of Western Uusimaa ry

Yara Finland

a-Lab Ltd

Biota BD Oy

The Finnish **Drainage Centre**

Luode **Consulting Oy**

Logica

Pro Agria

TeliaSonera Finland Oyj

Participants

Pohjoisen Kantaperuna Ltd

Water and **Environment** Research of **South-West Finland Oy**

TEKES

Ministry of Agriculture and Forestry

Ministry of **Environment**

More information: www.mtt.fi/soilweather

THANK YOU!

