

Weather Forecasting for Urban Areas

Martin Best

June 2005

Overview

- The urban canopy scheme
- Operational implementation
- Urban model options
- Anthropogenic heat sources
- Identifying Improvements

The urban canopy scheme

Mesoscale Model Urban Landuse

Met Office Surface Exchange Scheme (MOSES)

Urban canopy scheme

Modelled Surface Heat Flux

E-W Temperature X-section

Operational Implementation

Operational Implementation

- WMO Block3 stations
- London
- 5 cities index

Weather forecasting

Met Office operational temperature verification

Atmospheric dispersion

© Crown copyright 2005 Page 12

Urban model options

Available models

Empirical models

Simplified energy balance models

Dynamical models

Detailed energy balance models

Full energy and dynamical models

Which model?

© Crown copyright 2005 Page 15

Current Modelling Approaches

Best

Met Office

Masson

Météo France

Environment Canada

Brown

COAMPS

MM5

Martilli

Météo Schweiz

Anthropogenic heat sources

Introducing anthropogenic heat sources

- Fixed internal building temperatures
- Additional source term to energy balance
- Additional source term to surface heat flux

© Crown copyright 2005 Page 18

Urban energy consumption estimate for UK

© Crown copyright 2005

DTI: Digest of United Kingdom Energy Statistics

20 Year Temperature Climatology around London

Identifying Improvements

Mexico City

Surface Scheme Coupling

Conclusions

Conclusions

- Simple schemes can represent some urban phenomenon
- Can achieve significant improvements to operational weather forecasts in urban areas
- Schemes with range of complexities are available and now being implemented
- Need to represent anthropogenic heat sources
- Need observational data to identify problems and develop solutions

State of art and challenges in real-time urban weather forecasting

State of the art:

Recognise that representing urban areas is important

Challenges:

➤ How to accurately represent urban areas without compromising operational requirements (e.g. timeliness)

Helsinki Testbed:

➤ Provide data to help identify dominant urban processes and hence the optimum scheme for operational weather forecast models (e.g. through intercomparison of schemes)